
ExpL Specification

April 14, 2016

Introduction

ExpL (Experimental language) is the language for which we will build the
compiler through this course. Following are the minimal features that the
language supports.

Supported Data Types

Primitive data types Integer : An integer type variable is declared using
the keyword int. Example :

int a, b, c; /* Declares variables a, b, c of type integer */

String : A string is a sequence of characters. A string type variable is declared
using the keyword str. Example :

str mystring; /* Declares a variable mystring of type string. */

Boolean : ExpL does not permit boolean variables. But logical expressions like
(a < b) or (a==b) and (a< 5) are supported and are considered to be of type
boolean.

Composite data types Arrays

Arrays can be of integer or string or user-defined type only. Only single-
dimensional arrays are allowed. The semantics is similar to that of C program-
ming language. Arrays are allocated statically.

Example :

1

int a[10]; /* array a indexed a[0],a[1],..a[9], can store 10 integers*/
str stringlist[10]; /* stringlist is an array of 10 strings */

User-defined types

ExpL allows user defined data types. The (member) fields of a user defined
type may be of type a) integer, b) string, c) a previously defined user defined
type or d) the type that is currently being defined. Arrays of user defined types
are not allowed.

Note : ExpL specifies that the store for variables of user defined types shall be
dynamically allocated. Hence the programmer has to call the library function
alloc() to allocate store for variables of user defined types before use. User
defined types take default value NULL unless allocated or assigned
otherwise. Store allocated for a variable of a user defined type is de-allocated
using the free() library function.

Example : A user defined type, mytype is defined as:

mytype
{

int a;
str b;

}

a variable of type mytype is declared as:

mytype var;

Storage for the variable is allocated as:

var=alloc(); /* Note: Access without allocation
can lead to run time errors */

Its fields may be accessed as:

var.a=10; /* the “.” symbol is used to
access member fields */

var.b="hello";

2

The memory allocated may be freed as:

retval = free(var);

Note : The ExpL compiler may internally represent var like a pointer variable.
The library function alloc may be designed so as to allocate memory and return
pointer to allocated memory. (Library functions are explained in detail later on.)
The returned pointer is stored in var.

General Program Structure

An ExpL program consists of the following sections:

• Type Definitions - Optional (for user defined types)
• Global (global variables, arrays and functions) Declarations
• Function Definitions and the main Function Definition

Following subsections explain each program section.

Type Definitions All user-defined types in the program must defined in the
type definition section. Type Definition section starts with keyword type and
ends with endtype.

Example

Global Declarations The global declaration part of an ExpL program begins
with the keyword decl and ends with the keyword enddecl. All global variables,
arrays and functions in a program must be declared in this section.

Global variables may be of type integer, string, a user defined type, an integer
array or a string array. The variables declared globally must be allocated
statically by the compiler. Global variables are visible throughout the program
unless suppressed by a redeclaration within the scope of some function. Array
type variables can be declared only globally. Only single dimensional arrays
are allowed. Variables cannot be assigned values during the declaration
phase.

For every function except the special main function defined in an ExpL program,
there must be a declaration. A function declaration should specify the name of
the function, the name and type of each of its arguments and the return type of
the function. A function can have integer/string/user defined type arguments.
The return type of a function also can be integer/string/user-defined type. ExpL

3

enforces call-by-value semantics for integer and string parameters and call-by-
reference for user defined types. (A variable of a user defined type typically
stores a reference to its store.) Arrays cannot be passed as arguments.
If a global variable name appears as an argument of a function, then within
the scope of the function, the new declaration will be valid and global variable
declaration is suppressed. Different functions may have arguments of the same
name. However, the same name cannot be given to different arguments in a
function. The general form of declarations is as follows:

type VarName1, VarName2 ; /* variable declarations */
rettype FunctionName (ParameterList); /* A function declaration */
type VarName[ArraySize]; /* An array declaration */

Note : Declarations for variables/functions of the same type can be combined as
shown in the following example.

Example :

decl /* Please note the use of "," and ";" */
int x,y,a[10],b[20]; /* x,y are integers, a,b are integer arrays */
str t, q[10], f3(str x); /*variable, array and a functions declared together*/
mytype m, fun(mytype t); /* myptype must be a user defined type */
/* The argument and return value of fun are references to mytype */

enddecl

Declaring functions at the beginning avoids the “forward reference” problem and
facilitates single pass compilation. If a variable/function is declared multiple
times, a compilation error should result.

Function Definitions and the Main Function All globally declared vari-
ables are visible inside a function, unless suppressed by a re-declaration within
the function. Variables declared inside a function are invisible outside. The
general form of a function definition is given below:

< Type > FunctionName(ArgumentList)
{

Local Declarations
Function Body

}

4

The names and types of the arguments and return value of each function definition
should match exactly (name equivalence) with the corresponding declaration.
Every declared function must have exactly one definition. The compiler should
report error otherwise.

The syntax of local declarations and definitions are similar to those of global
declarations except that arrays and functions cannot be declared inside a function.
Local variables are visible only within the scope of the function where they are
declared. The scope of a parameter is limited to the function. Static scope rules
apply.

The main() function, by specification, must be a zero argument function of
return type integer. It must be defined after all other functions are defined.
Program execution begins from the body of the main function. The main function
must not be declared. The definition part of main should be given in the same
format as any other function.

The Body of a function is a collection of statements embedded within the
keywords begin and end.

Example : The definition of a swap function may look like the following:

int add(int a,int b)
{

decl
int c,d;

enddecl
begin

c = a + b;
d = a - b;
write(c);
write(d);
return c;

end
}

Local Variables and parameters should be allocated space in the run-time stack
of the function. The language supports recursion.

Each statement should end with a ‘;’ which is called the statement terminator.

There are seven types of statements in ExpL. They are:

1. Assignment Statement
2. Conditional Statement
3. Iterative statement
4. Return statement

5

5. Input/Output statements
6. Break statement
7. Continue statement

The next section discusses statements and expressions in ExpL.

Statements and Expressions

Before taking up statements, we should look at the different kinds of con-
stants and expressions in the language. ExpL has two kinds of expressions, a)
Arithmetic expressions and b) Logical expressions.

Constants

Any numerical value (Example: 234) is an integer constant. A quoted string
(Example: “hello”) is a string constant.

Arithmetic Expressions

Any integer constant/variable is a valid arithmetic expression, provided the scope
rules are not violated. ExpL treats a function returning integer as an expression
and the value of a function is its return value.

ExpL provides five arithmetic operators, viz., +, -, *, / (Integer Division) and
% (Modulo operator) through which arithmetic expressions may be combined.
Expression syntax and semantics are similar to standard practice in programming
languages and normal rules of precedence, associativity and paranthesization
hold. eXpL is strongly typed and any type mismatch or scope violation
must be reported at compile time.

Examples : 5, a[a[5+x]]+x , (f2() + b[x] + 5), sum + listObject.data ,
a[listObject.data] + f2(listObject) * 8 etc. are arithmetic expressions, provided
type and scope rules are not violated.

Logical Expressions

Logical expressions may be formed by combining arithmetic expressions using
relational operators. The relational operators supported by eXpL are <, >,
<=, >=, ==, and !=. Again standard syntax and semantics conventions
apply. Logical expressions may be combined using logical operators and, or
and not. Note that the relational operators except == and != can compare
only two arithmetic expressions and not two logical expressions.

6

Variables of string type or user defined types can only be checked for equal-
ity/inequality using the ==/!= operator.
Example :((x==y)==a[3]) is not valid eXpL expression because (x==y) is a
logical expression, while a[3] must be a variable of type integer/string. The “==”
operator can be applied only between expressions of the same type.
(“hello”==a) is a valid logical expression provided, a is a variable of string type.
(p==q) is a valid logical expression provided p and q are variables of the same
type.
SetOne.name == “a” , SetOne.total >= SetTwo.total are valid only if SetOne
is of type string and field ‘total’ is of type integer.

Assignment Statement

The general syntax of the assignment statement is :

Lvalue = Rvalue;

The possible Lvalues are variables or an indexed array variables. If the Lvalue
has type integer, the Rvalue can be any arithmetic expression. If the Lvalue has
type string, the Rvalue can be a string constant or a variable of type string. If
the Lvalue is a user defined variable, the Rvalue must be a user defined variable.
Example : q[3]= “hello” ; t= “world” ; are both valid assignments to string
variables provided q is declared as an array of type string and t is declared as a
variable of type string. x=y; is valid if x and y are of the same type and scope
rules are not violated.
In an assignment x=y where x and y are of a primitive type (integer or string),
the value inside the location indicated by y is copied into the location indicated
by x. On the other hand, if x and y are of a user defined type, the assignment
only makes both x and y refer to the same memory object. This is because
a variable of a user defined type stores a reference to its store allocated using
alloc().

Conditional Statement

The eXpL conditional statement has the following syntax:

if < Logical Expression > then
Statements

else
Statements

endif;

7

The else part is optional. The statements inside an if -block may be conditional,
iterative, assignment, input/output, break or continue statements, but not the
return statement.

Iterative Statement

The eXpL iterative statement has the following syntax:

while < Logical Expression > do
Statements

endwhile;

Standard conventions apply in this case too. The statements inside a while-
block may be conditional, iterative, assignment, input/output, break or continue
statements, but not the return statement.

Return Statement

The body of each function (including main) should have exactly one return
statement and it should be the last statement in the body. The syntax is:

return < Expression > ; /* if the return type of
the function is integer*/

return < string constant/variable > ; /* If the
return type is string */

return < variable >; /* If the return type of
the function is a user defined type*/

If the return type of the function does not match the type of the expres-
sion/variable returned, a compilation error should occur. The return type of
main is integer by specification

Input/Output statements

Using read statement, we can read a string or integer to a variable of type
string or integer respectively from the standard input. The syntax of the input
statement is as follows :

read(< variable >);

8

Using write statement, we can write the value of an integer or string type
variable and value of an arithmetic expression to the standard output.
The output statement is as follows :

write(< expr >);

Break and Continue Statements

A break; statement inside an iterative block tranfers control to the end of
the block. A continue; inside a conditional/iterative block transfers control
to the beginning of the block. These statements do nothing if not inside any
conditional/iterative statement.

The next section briefly discusses the library functions for dynamic memory
allocation.

Dynamic memory allocation

The library functions initialise(), alloc() and free() are used as follows:

intialise(); /* To Intialise the heap. */
t = alloc(); /* Allocates contiguous locations in the heap,

t must be a user defined variable */
retval = free(t); /* Free the allocated block ,

t must be a user defined variable */

Intialise() must be invoked before any allocation is made and it resets the heap
to default values. A call to alloc() allocates contiguous memory locations in the
heap memory (memory reserved for dynamic memory allocation) and returns
the address of the starting location. The Expl compiler sets the variable (of a
user defined type) on the left of the assignment to store this memory address. A
call to free() deallocates contiguous memory locations in the heap memory that
is referenced by user defined type variable t. The function free() returns ‘null’ on
successful deallocation. Otherwise, the value of t is unchanged by call to free().
All unallocated user defined variables are set to predefined constant ‘null’.

Sample Programs

An Example ExpL Program without user defined types

The following program calculates and prints out the factorial of the first n
numbers, value of n read from standard input.

9

Sample ExpL program using User Defined types

The following program reads elements into a linked list and prints them.

Appendix

Keywords The following are the reserved keywords in ExpL and it cannot be
used as identifiers.

read
write
if
then
else

endif
do
endwhile
break
while

int
str
return
decl
enddecl

type
endtype
NULL
continue
main

Operators and Delimiters The following are the operators and delimiters
in ExpL

>

<

>=

<=

!=

==

(

)

{

}

[

]

/

;

*

=

+

-

10

%

AND

NOT

OR

.

Identifiers Identifiers are names of variables and user-defined functions. Iden-
tifiers should start with an letter, and may contain both letters and digits.
Special characters are not allowed in identifiers.

letter -> [a-z]|[A-Z]

digit -> [0-9]

identifier -> (letter)(letter | digit)*

Constants

Interger constants are represented in the standard way. Any sequence of charac-
ters enclosed within double quotes (”) are considered as string constant. Normally,
implementations append a ’\0’ character which is implicitly appended at the
end of a string value. The maximum size of integers and strings are left to the
implementation. ExpL uses the generic constant NULL to indicate the values of
unallocated user defined variables and unassigned file descriptors.

Examples : 19, -35, “Hello World”

11

	Introduction
	Supported Data Types
	General Program Structure
	Statements and Expressions
	Constants
	Arithmetic Expressions
	Logical Expressions
	Assignment Statement
	Conditional Statement
	Iterative Statement
	Return Statement
	Input/Output statements
	Break and Continue Statements

	Dynamic memory allocation
	Sample Programs
	Appendix
	Constants

